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ABSTRACT 

The F14 recombinant inbred population derived from a cross between japonica rice 

variety, Lemont and indica variety, Teqing was inoculated by ten Philippine and 

Vietnamese blast races (M36-1-3-10-1, M64-1-3-9-1, BN111, M39-1-2-21-2, 

V86010, 142A, 101A, 110A, RB and 138A). The three major resistance genes were 

identified on chromosomes 2, 11 and 12 as previously reported. The other two 

resistance loci on chromosomes 6 and 10 were new blast resistance genes. By QTL 
mapping, out of 48 detected QTLs, fourteen main-effect QTLs (M-QTLs) were 

identified, nine of which with the resistance allele coming from Teqing, M-QTL 

bracketed by J01100-AJ13060 on chromosome 11 that was derived from Lemont 
was mapped to the same genomic region of previously identified qualitative 

resistance genes; 34 were epistatic QTLs (E-QTLs). Most of partial resitance genes 

may be race specific in effect and the interactions between QTLs were also 
important for overall phenotype. 
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INTRODUCTION 

Blast caused by Pyricularia grisea Sacc. has 
been a major factor limiting rice production 
worldwide. Rice blast epidemics have been 
reported in several countries, particularly in 
Asia, typically resulting in 10-50% yield 
losses. Breeding for blast resistance is limited 
by the high degree of pathogenic variability 
that can overcome resistance in a very short 
period of time. Breeding and utilization of 
resistant varieties are still considered the most 
economic and effective ways for controlling 
rice blast. 

Extensive classical genetic studies on blast 
resistance have been conducted, resulting in 
the identification of 13 major genes at eight 
loci conferring complete resistance 
(Kiyosawa, 1981). Moreover, many resistance 
genes have been found, a total of 38 genes 
were registered and some have been located 
on rice genetic maps (Nagato and Yoshimora, 
1998). In the past few years, more than 15 
major genes and 13 quantitative trait loci 
(QTLs) associated with blast resistance have 
been localized through the use of molecular 
marker technology (Wang et al 1994, Yu et al 

1991,1996, McCouch et al 1988, 1994, 
Causse et al 1994, Pan et al 1996, 1999, Naqvi 
et al 1995, Naqvi and Chattoo 1996, Tabien et 
al 1998, Chen et al 1999). Three blast 
resistance genes, Pi-b, Pi-ta2, and Pi-ta, have 
been cloned through approaches of positional 
cloning (Miyamoto et al 1996, Wang et al 
1999, Nakamura et al 1997). Sallaud et al 
(2003) showed that additional resistance 
genes can be identified in crosses between 
different rice cultivars after exposure to a 
large set of isolates from diverse geographic 
or genetic origins. The identity and behavior 
of resistance genes in rice are highly 
dependent on the resistance genotypes of all R 
genes, the test materials, the pathogen 
isolate(s) used, and the particular phenological 
and environment conditions under which 
plants are inoculated and evaluated (McCouch 
et al 1994). 

The objective of this study was to study the 
number of major resistance genes present in 
Lemont and Teqing and to locate main-effect 
QTLs and epistatic QTLs controlling blast 
resistance. 
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This study was conducted at the Genome 
Mapping Laboratory, International Rice 
Research Institute, Philippines and the Plant 
Pathology Department, Cuu Long Delta Rice 
Research Institute, Vietnam. 

MATERIALS AND METHODS 

Phenotyping of recombinant inbred line 
(RIL) 

Reaction to rice blast isolates 

The materials included  a set of 292 F14 RILs 
(at International Rice Research Institute, 
Philippines) and a subset of 174 F14 RILs (at 
Cuu Long Delta Rice Research Institute, 
Vietnam) derived by single seed descent from 
a cross between a japonica variety, Lemont, 
and an indica rice variety, Teqing (Li et al 
1995a, 1995b); the parents (Lemont and 
Teqing); and a susceptible check, Li-Jiang-
Xin-Tuan-Hei-Gu (LTH). 

Ten Pyricularia grisea races were used to 
evaluate the reaction of plant materials to 
blast, namely, the Philippine races M36-1-3-
10-1, M64-1-3-9-1, BN111, M39-1-2-21-2, 
and V86010 and the Vietnamese races 142A, 
101A, 110A, RB, and 138A . Plants were 
grown in the greenhouse and inoculated at 21 
days after sowing. Disease reaction of each RI 
line was scored seven days after inoculation 
using the Standard Evaluation System (SES) 
rating scale for leaf blast (INGER, 1996). 
Scores of 0-3 were considered resistant (R) 
and 4-9 were grouped as susceptible (S). 

Genotyping of Recombinant Inbred Lines 

A linkage map using 292 F13 RILs with a total 
of 230 markers (2 RFLPs, 121 SSRs, 99 
RAPDs, 7 isozyme markers, and 1 
morphological markers) was constructed by 
Yu, Loan and co-workers at the Genome 
Mapping Laboratory, IRRI,  using the 
software Mapmaker/exp Version 3.0 (Lincoln 
et al. 1993). 

For microsatellite (SSR) analysis, young leaf 
tissues from a single plant of each RIL was 
harvested. DNA was extracted by the method 
of Zheng et al (1995). PCR amplification was 
performed and PCR products were run on 5% 
polyacrylamide gel. 

 

Statistical Analysis 

Likelihood ratio chi-square tests were used to 
analyze the discrete greenhouse phenotypic 
data on resistance or susceptibility to the races 
and the genotypic data using SAS PROC 
FREQ (SAS Institute 1996) to detect the 
association between resistance phenotypes 
and the marker genotypes, which allowed 
mapping the major gene involved. To make 
sure of the association, two rounds of analysis 
were done. Very large likelihood chi-square 
statistic values (G2) would indicate the strong 
marker-phenotype (resistance) association and 
suggest the presence of a major gene for 
vertical resistance. To further evaluate the 
location of resistance QTLs, the average 
ratings were treated as quantitative data and 
were analyzed using QTLMapper v. 1.0 
(Wang et al 1999). The threshold of 2.0 LOD 
or greater was chosen for claiming putative 
main effect and epistatic QTLs. A relative 
contribution was calculated as the portion of 
variance caused by a specific genetic source 
in the total phenotypic variance, taken as a 
heritability contributed by that genetic source.  

RESULTS 

Genotyping of Lemont/Teqing 
Recombinant 

Inbred Population 

The linkage map of 230 markers included one 
morphological trait locus, 7 isozyme loci, 2 
RFLP, 121 SSR, and 99 RAPD loci spanning 
2314.4 cM and covering 12 rice chromosomes 
with an average distance of 10.1 cM between 
adjacent markers. The number of markers per 
chromosome ranged from 10 to 30. The 
smallest genetic distance was between OSR26 
and RM48 (1.2 cM) on chromosome 2 and the 
largest, between RM258 and RM333 (33.6 
cM) on chromosome 10. The orders of most 
markers on individual chromosomes were 
identical to the existing map based on the 
IR64/Azucena doubled haploid population 
published by Temnykh et al (2001). On the 
average, alleles from the indica parent, 
Teqing, accounted for 51.5%, (ranging from 
25 to 78%), slightly higher than the expected 
50%. However, individual markers in the 
RILs favored either the Lemont allele or the 
Teqing allele.  Based on χ2 tests, segregation 
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at 145 marker loci (63%) had a good fit with 
the expected 1:1 ratio and segregation 
distortion was observed at the remaining loci 
on all 12 chromosomes (Table 1). The Lemont 

allele was favored in loci on chromosomes 5 
and 12  (17%) while the Teqing allele was in 
excess at the remaining loci (83%).  

 
Table 1. Linkage map of LemontxTeqing F13 recombinant inbred population 
 

PARAMETERS LEMONT x TEQING 
Total length 2314.4 cM 
Average distance between markers 10.1 cM 
Smallest genetic distance 1.2 cM 
Largest genetic distance 33.6 cM 
Mean allele frequency ofTeqing  51.5 % 
No. of markers with the good fit with the expected segregation 
1:1 ratio 

154.0 

 
Parental Reactions to Blast Races 
Table 2 showed the disease scores of the 
parents (Lemont and Teqing) for the five 
Philippine races and five Vietnamese races of 
blast. Quantitatively, none of the parents were 
highly susceptible to any of the blast races 
used as compared to the susceptible check, 
LJXTHG (rating = 9.0), though race 8 
appeared to be most virulent and had average 
ratings of 7.2 and 6.6 on Lemont and Teqing, 
respectively. Race 6 was also compatible to 
both parents.  

Phenotypic Variation of the RILs for Blast 
Resistance 
The RILs showed considerable variation for 
disease ratings (Table 2 and Fig. 1). The 
frequency distributions of the 292 RILs for 
disease ratings were continuous except for 

races 2 and 5 which showed bimodal 
distribution suggesting the involvement of 
major resistance gene(s). The segregation 
ratio of resistant (rating ≤ 3.0) vs. susceptible 
(rating > 3.0) plants of the RILs varied 
considerably across different races and in 
most cases, there was an excess of susceptible 
plants except for race 10 with a 1:1 ratio, race 
4 with an approximate ratio of 15R: 1S, and 
race 3 with an approximate ratio of 24R: 1S, 
respectively. Transgressive segregation was 
detected in the RILs with all levels of 
resistance, ranging from highly resistant to 
highly susceptible. These results indicated that 
the genetics of resistance to leaf blast of the 
RILs was very complex and depended largely 
on the races of the pathogen. 

 
Table 2. Leaf blast rating indices for the parental lines and Lemont/Teqing recombinant inbred 

population to ten races of P. grisea 

                           RATINGS* 

Recombinant Inbred Lines Parents 

RACE 

mean SD min. max. Lemont mean Teqing mean 
M36-1-3-10-1 (Race1) 4.7 1.5 1.0 9.0 3.0 (R) 5.4 (S) 
M64-1-3-9-1 (Race 2) 4.2 1.9 0.0 8.8 4.8 (S) 3.0 (R) 
BN111 (Race 3) 1.4 1.0 0.0 6.5 0.7 (R) 1.9 (R) 
M39-1-2-21-2 (Race 4) 1.8 1.0 0.0 9.0 1.7 (R) 2.6 (R) 
V86010 (Race 5) 2.3 1.9 0.0 6.8 1.0 (R) 2.8 (R) 
       
142A (Race 6) 4.6 1.2 2.3 8.0 4.0 (S) 4.4 (S) 
101A (Race 7) 5.4 2.0 1.6 9.0 6.2 (S) 2.9 (R) 
110A (Race 8) 6.6 1.6 3.0 9.0 7.2 (S) 6.6 (S) 
RB (Race 9) 4.1 1.8 0.3 8.8 4.0 (S) 2.5 (R) 
138A (Race 10) 3.7 1.1 1.0 9.0 3.0 (R) 2.9 (R) 

* R: resistant (score of 0-3), S: susceptible (score of 4-9) 
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Fig. 1. Frequency distribution of mean scores for resistance to five Philippine rice blast 
races (M36--1-3-10-1, M64-1-3-9-1, BN111, M39-1-2-21-2, V86010) and five races from 
Vietnam (142A, 101A, 110A, RB, 138A) in the RI population. Arrows show the mean values 
of disease score of the two parents and RILs. 
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Genomic Regions Associated with  

Complete Resistance to Blast 

When the RILs were classified qualitatively 
into resistant (rating ≤ 3.0) and susceptible 
ones (rating > 3.0) and subjected to 
association analyses, 27 genomic regions were 
found to be associated significantly with 
resistance to at least one of the ten races based 
on both unconditional and conditional 
likelihood chi-square statistics G2 (Table 3). 
Out of these, there were 15, 6, 3, 2, 8, 4, 0, 2, 
2, and 3 genomic regions associated with 
resistance to races 1-10, respectively, 12 
genomic regions associated with resistance to 
2 of the races, and 3 regions with resistance to 
3 of the races. The Lemont allele at 16 of 
these regions and the Teqing allele at 6 loci 
were associated with resistance. At four loci 
on chromosomes 6, 7, 8, and 11, resistance 
was associated with either Lemont or Teqing 
allele depending on the race. Three loci 
showing the strongest association with 
resistance were A10100, J01100, and OSR32 
on chromosomes 2, 11, and 12, respectively, 
which mapped to the same regions of Pi-tq5, 
Pi-lm2, and Pi-tq6 identified in the same 
population by Tabien et al (2000). Two 
additional loci near AG15040 on chromosome 
6 (G2 = 19.94) and AK10150 on chromosome 
10 (G2 = 15.49) also showed strong 
associations with resistance. The Lemont 
allele at both loci conferred this resistance. 
These two loci were not reported previously. 

The genomic region identified with the 
highest G2 (91.2) was near OSR32 on 
chromosome 12 where the Teqing allele 
conferred a high level of resistance to race 2 
and four US races of blast (Tabien et al, 
2000). This region was reportedly harboring a 

cluster of R genes including Pi-4(t) and Pi-
6(t) (Yu et al, 1991), Pi-ta (Wu et al, 1995), 
Pi-12(t) (Zheng et al, 1995), Pi-62(t) (Wu et 
al, 1995), Pi-20(t) (Imbe et al, 1997), Pi-21(t) 
(Ahn et al, 1997), and Pi-tq6 (Tabien et al, 
2000).  

The genomic region near J01100 in 
chromosome 11 where the Lemont allele was 
effective against races 1, 5, and 6 was also of 
interest because this region was also reported 
to harbor a cluster of resistance genes 
including Pi-1(t) (Yu et al 1991, Mew et al 
1994), Pi-k (Inukai et al 1994), Pi-7(t) (Wang 
et al 1994), Pi-44(t) (Chen et al 1999), Pi-lm2 
(Tabien et al 2000), and Pi-18(t) (Ahn et al 
2000). It is, however, difficult to determine 
the correspondence between the R gene 
identified in this study to any of the 
previously reported R genes based on the 
available data. This gene showed a high level 
of race specificity. For instance, the Lemont 
allele had a strong association with resistance 
to race 5 detected by a G2 of 49.7, much 
weaker associations with resistance to races 1 
and 6 (G2 = 9.6 and 16.3), and no association 
with resistance to the remaining 7 races.  

Except for the three loci mentioned above, the 
remaining 24 genomic regions had relatively 
weak associations with resistance, though 
some of these loci (AD14030, AL08120, 
RM217 and RM254 on chromosomes 2, 4, 6, 
and 11, respectively) appeared also to be 
located near previously reported R genes such 
as Pi-14(t) (Pan et al 1998), Pi-5(t) (Wang et 
al 1994), Pi-10(t) (Naqvi et al 1995), Pi-23(t) 
(Ahn et al 1997), Pi-8(t) (Pan et al 1996), 
Pi13(t) (Pan et al 1998), Pi-2(t) (Yu et al 
1991), Pi-z (Inukai et al 1994), Pi-22(t) Ahn 
et al 1997), and Pi-7(t) (Wang et al 1994). 
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Table 3. Genomic regions showing significant association with blast resistance detected in the 
Lemont x Teqing (LxT) recombinant inbred population. 

 
G2 G2 R G2 G2 R Race Chr. Markera 

uncon. con. ALLELE 

Race Chr. Markera 
uncon. con. ALLELE 

R1 1  RM220 10.63 7.82 L R1 7 G06080 8.40 6.81 L 

R1 1 RM294b  8.57 T R1 7 Q05150 10.18 9.43 L 

R2   7.98 7.29 T R5   23.28 7.11 L 

R2 1  RM212* 7.21 8.90 T R1 8 AJ5055 9.20 12.75 L 

R9   9.57  T R1 8 G10080 10.10 10.14 L 

R1 2  RM211 7.90 9.39 L R6 8 RM210  10.08 L 

R10 2  AD14030 6.04 8.56 T R9   4.17 7.13 T 

R5 2  A10100 16.25 37.84 T R1 10 AK10150* 15.49  L 

R1 4  RM307 10.18 7.91 L R1 10 RM228 13.44 9.25 L 

R5   11.61 8.60 L R6   13.10 12.00 L 

R2 4  D15040 3.86 11.78 L R5 11 RM20 10.79 11.02 L 

R3   5.20 7.40 L R10   5.41 7.71 L 

R1 4  H19075* 5.38 14.70 L R1 11 A12055 9.26 9.28 L 

R4   10.36  L R8   5.41 8.39 T 

R6   6.86 7.54 L R2 11 RM254  9.40 L 

R2 4  AL08120 10.45 13.19 L R5   21.16 8.46 L 

R3 6  RM217 7.46 8.01 T R6   11.13 12.00 L 

R5   10.28 7.63 L R1 11 J01100* 8.76 9.58 L 

R8 6  K09070 8.91 8.74 T R5   49.66  L 

R1 6  AG15040 8.49 19.94 L R6   16.26  L 

R1 7  AL08025  7.25 L R2 12 OSR32* 91.18  T 

R10    8.98 T R4 12 P01065 13.65 9.53 L 

      R5    7.33 L 

 
G2

uncon. is the likelihood ratio chi square statistic in unconditional test. 
G2

con. is the likelihood ratio chi square statistic in conditional test. The significant values of G2  at P = 0.01, 0.001, and 
0.0001are 6.64, 10.83, and 15.12, respectively. 
*Markers with highest G2 value are used in conditional tests. 
Shaded values are the highest G2 values at P <   0.0001. 
a Bold markers are associated with the detected main effect QTLs affecting blast resistance. 
 
QTLs Affecting Blast Resistance  

Table 4 and Fig. 2 showed the 14 
main-effect QTLs (M-QTLs) affecting 
resistance to 10 blast races. All these QTLs 
were detected by LOD scores greater than 2.5 
except one (LOD = 1.71). Of the 14 M-QTLs, 
four were associated with markers for vertical 
resistance (Table 3). Each of three M-QTLs 
(QBr3, QBr5, and QBr8) located in the 
intervals between RM251 and RM282 on 
chromosome 3, between RM163 and RM161 
on chromosome 5, and between RM223 and 
RM210 on chromosome 8 was effective 
against two of the races. The Lemont allele at 

QBr8 was associated with resistance to races 
6 and 10 while the Teqing allele at QBr3 
resulted in resistance to both races 4 and 8. 
Interestingly, the Lemont allele at QBr5 was 
associated with resistance to race 10 while the 
Teqing allele at this locus resulted in 
resistance to race 2. The remaining M-QTLs 
were each effective to one single race. 
Associated with resistance was the Teqing 
allele at nine of the loci (QBr1a, QBr1b, 
QBr2a, QBr2b, QBr2c, QBr3, QBr7, QBr10, 
and QBr11a) and the Lemont allele at the 
remaining 3 loci (QBr4, QBr9, and QBr11b). 
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Table 4. Main effect QTLs affecting SES ratings detected in Lemont/Teqing RILs inoculated 

with ten rice blast races. 

 
M-QTL CHR. MARKER INTERVAL RACE LOD A R2 (%) 

QBr1a 1 E11075 – RM84 9 2.61 0.46 6.4 

QBr1b 1 G04035 – RM212 8 6.01 0.60 14.9 

QBr2a 2 RM27 – RM324 7 2.88 0.40 7.4 

QBr2b 2 RM221 – RM6 6 2.45 0.23 4.2 

QBr2c 2 RM138 – OSR26 9 3.05 0.48 7.0 

QBr3 3 RM251-RM282 4 2.26 0.19 3.5 

   8 2.52 0.38 6.9 

QBr4 4 O07080 – AB11070 9 1.71 -0.38 4.4 

QBr5 5 RM163 – RM161 2 2.62 0.33 4.7 

   10 2.92 -0.32 7.1 

QBr7 7 AL08025 – Q05070 10 2.45 0.30 5.6 

QBr8 8 RM223 – RM210 6 6.11 -0.45 15.6 

   10 4.23 -0.42 12.6 

QBr9 9 RM278 – OSR28 8 2.93 -0.37 6.4 

QBr10 10 RM239 – D02090 6 4.61 0.45 16.1 

QBr11a 11 RM229 – RM21 3 2.68 0.20 4.1 

QBr11b 11 J01100 – AJ13060 6 6.95 -0.39 12.1 

 
A: additive genetic effect of QTLs due to substitution of Lemont allele by Teqing allele. Positive and negative values 

show that allele resulting in an increase in resistance is from Teqing and Lemont, respectively.   
R2 (%): proportion of phenotypic variation explained by a single QTL. Bold markers are also associated with 

vertical resistance to one or more races by association analyses (Table 3). 
 
 
Table 5 and Fig. 2 showed 34 pairs of digenic 
epistatic QTLs (E-QTLs) for resistance to 10 
blast races. All these QTLs were detected by 
LOD scores greater than 2.5. Of the E-QTLs, 
10 were associated with markers for vertical 
resistance (Table 3) and 9 were associated 
with markers for M-QTLs for resistance 
(Table 4). Positive epistatic effects indicated 
that the recombinant types of alleles at the 
interaction loci were expected to result in 
resistance, and negative epistatic effect 
showed that parental-type interactions tended 
to result in resistance. 

The contributions of E-QTLs were higher 
(14.6-51.0%) than those of main effect QTLs 
(M-QTLs) (3.5-16.1%). M-QTL bracketed by 
J01100-AJ13060 mapped to the same 
genomic region of previously identified 
qualitative resistance gene. This result is in 
agreement with other studies indicating that 
this QTL was a “defeated” version of 
qualitative resistance gene, though only more 
precise mapping and gene cloning can resolve 
this definitely (Young 1996, Li et al 1999). 
Eleven resistance QTLs detected by the race 
142A highly contributed to phenotypic 
variation (total R2 = 99%). 
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Table 5. Digenic epistatic QTLs affecting SES ratings detected in Lemont/Teqing RILs 

inoculated with ten rice blast races.  
 

Race Chr. Marker interval I Chr. Marker interval J LOD AI AJ AAIJ R2 (%) 

Race 1 1 RM23-W17065 4 RM317-AP13060 4.80 - -  0.46*** 8.7 

 2 RM27-RM324 12 OSR20-OSR32 4.13 - - -0.30** 3.6 

 2 RM29-K02050 5 RM163-RM161 3.62 - -0.21* -0.44** 8.0 

 3 RM148-RM85 12 RM17-P01065 4.08 - -  0.37** 5.5 

 4 AP13060-RM255 12 Sdh1-A19080 5.24 - -  0.45*** 8.0 

 10 RM216-G03030 11 J01100-AJ13060 4.80 - - -0.34** 4.7 

Race 2 1 F04025-RM9 3 Q05075-A10050 4.43 - - -0.59*** 7.6 

 2 K02050-RM263 4 F05050-RM307 3.35 - -  0.52** 5.8 

 5 AP05170-RM249 6 A07020-G15110 6.59 - -0.33*  0.74*** 12.2 

 7 AL09170-Q120100 8 A12100-AP20120 4.97 - - -0.72*** 11.4 

Race 4 2 RM221-RM6 4 O07080-AB11070 3.99 - -  0.27*** 8.1 

 3 Q05075-A10050 5 RM161-OSR49 3.33 - -  0.24** 6.5 

Race 5 2 RM221-RM6 7 AL08025-Q05070 3.75 - - -0.46*** 5.9 

 4 O07080-AB11070 10 RM222-AK10150 4.84 - - -0.48** 6.4 

 6 D06095-AB18130 9 RM316-RM219 4.05 - - -0.44** 5.3 

 6 D06095-AB18130 11 RM209-RM229 3.74 - - -0.50** 6.9 

Race 6 1 RM246-AL08055 2 RM6-RM250 7.29 - -  0.66*** 17.7 

 2 K02050-RM263 2 RM208-RM138 3.04 - - -0.29**  3.3 

 2 RM221-RM6 8 RM223-RM210 4.88 0.25** -0.19* -0.17* 1.9 

 6 RM30-RM340 11 AA18045-RM202 5.34 - - -0.47***  9.0 

 8 RM25-AJ5055 9 RM278-OSR28 5.44 - - -0.42***  7.0 

 8 G10080-D06045 12 RM277-RM260 7.64 -0.17* - -0.49***  9.7 

 9 RM257-RM242 11 J01100-AJ13060 6.77 - -0.37***  0.19*  2.4 

Race 7 2 RM29-K02050 3 A10050-AF07160 3.57 - - -0.59**  8.6 

 5 RM249-RM163 11 AA18045-RM202 6.21 - - 0.80*** 16.2 

Race 8 2 RM29-K02050 7 J14110-G06080 7.13 - - -0.71*** 17.6 

 3 G06075-RM168 12 G193-RM19 4.72 0.30* - 0.50***  8.6 

 3 RM55-O07130 6 RM225-RM217 5.04 - - -0.57*** 11.2 

Race 9 1 RM9-RM5 11 OSR6-J01100 4.08 - - 0.58***  9.2 

 1 AL08055-AP13110 2 RM6-RM250 5.21 - - 0.70*** 13.4 

 2 OSR14-OSR17 12 AB17100-A19080 3.81 - - 0.62*** 10.7 

 2 RM138-OSR26 9 RM205-AG08050 7.61 0.37* - -0.61*** 10.4 

Race 10 1 OSR3-RM104 4 RM137-AP13060 2.84 - - -0.31**   8.2 

 6 K09070-RM50 6 K09070-O02075 3.54 - - 0.37** 11.2 

 
AI and AJ: the main effects of the loci i and j, arising from the substitution of the Lemont allele by the Teqing allele 
AIJ: the epistatic effect between loci i and j.     
*, **, ***: significant levels of P<0.05, 0.001, 0.0001, respectively 
The underlined markers are associated with M-QTLs affecting blast resistance (Table 4) and the bold markers are 
associated with vertical resistance (Table 3). 
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Figure 2. Continued... 
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DISCUSSION 

Two types of resistance of rice plants to blast, 
the true or vertical resistance and field or 
horizontal resistance, have long been 
recognized (Kiyosawa 1970, van der Plank 
1963). The former is known to be associated 
with hypersensitivity and controlled by single 
major genes and the latter is quantitative and 
presumably controlled by polygenes. The ten-
scale evaluation system of 0-9 used in the 
present study could actually measure both 
types of resistance, in which ratings 0-3 were 
considered resistant (plants showing the 
hypersensitive reaction) and scores 4-9 were 
considered susceptible and measure the 
severity of the disease. The most striking 
observation in this experiment was that, when 
the disease score data were treated 
qualitatively, there were excessive susceptible 
lines in the RI population to most races, which 
could not be explained by any simple genetic 
models. For the only 2 cases (races 10 and 4) 
where the reactions of RILs segregated in the 
expected 1-gene and 4-gene models, the 
mapping results by association analyses did 
not reveal involvement of any major genes. 
The only three major R genes discovered in 
this study were each associated strongly with 
hypersensitivity to races 2 and 5, consistent 
with the bimodal distributions of the RILs for 
their reactions to these races. According to 
their genomic locations and resistance alleles, 
the three genes were apparently Pi-tq5, Pi-
lm2, and Pi-tq6 on chromosomes 2, 11, and 
12 identified in the same population by 
Tabien et al (2000). The strength of the 
associations, however, of the three R genes 
with hypersensitivity was much lower than the 
perfect 100% penetrance which would 
produce a G2 > 200.00 (Zhikang Li, personal 
communication). The hypersensitive reactions 
of some RILs to the remaining 8 races of blast 
appeared to be due to several genes with much 
lower penetrance as suggested by relatively 
low values of G

2 statistic. Thus, the 
differential and quantitative variation in 
penetrance of R genes to different races of 
blast appears to provide an adequate 
explanation for the “abnormal” segregation 
ratios for resistance of the RILs. This 
explanation was also consistent with the 

presence of resistant lines to races 6 and 8 
when both parents were compatible and with 
the observations that many of the identified 
QTLs fell in the genomic regions that were 
also associated with hypersensitivity. 

The identification of many QTLs affecting 
quantitative resistance to the ten blast races 
was expected given the compatibility of the 
parents to races 6 and 8, and large variation 
for susceptibility (score > 3.0) of the RILs to 
most races. In this study, 11 of the 14 M-
QTLs and all E-QTL pairs were each effective 
against only one race and the remaining three 
were each effective against two of the races. 
This high level of race-specificity of the 
identified QTLs was unexpected from the 
common view of “non-race specificity” 
presumed for the field or horizontal resistance 
to blast (Van der Plank 1968). It is not 
surprising if the observed race specificity of 
QTLs for partial resistance is in part due to 
the partial penetrance of many race specific R 
genes that were segregating in the RILs. Thus, 
results from this study and from many 
previous studies (Leonard-Schipper et al 
1994, Young, 1996, Lespinasse et al 2000) 
suggest that quantitative or field resistance 
may not be non-race specific. 

The frequent breakdown of high level 
complete resistance (hypersensitivity) due to 
the appearance of virulent races of the 
pathogen has imposed the greatest challenge 
to plant breeders to develop durably resistant 
rice cultivars. The observed presence of a 
large number of resistance loci and the high 
level of race specificity of these loci suggest 
that accumulation (pyramiding) of effective 
resistance alleles at as many as possible 
resistance loci should be one of the effective 
ways to achieve durable resistance to blast. 
The striking differentiation of alleles at many 
of the resistance loci for their reactions to 
blast races from geographically different 
regions suggests that effective alleles at 
resistance loci are more likely present in the 
germplasm from different geographic or 
ecological regions where the virulence of the 
pathogen races have become differentiated as 
a result of co-evolution in adaptation to the 
local races of the pathogen. 
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SUMMARY IN VIETNAMESE 

 
Xác định gen kháng bệnh cháy lá đối với các nòi chính ở  

Việt nam và Philippines 
 
Quần thể F14 các dòng cận giao tái tổ hợp có nguồn gốc từ cặp lai Japonica 
Lemont và Indica Teqing được đánh giá phản ứng đối với 10 nòi nấm cháy lá từ 
Philippines và Việt nam. 3 gen chủ lực đã được xác định trên nhiễm sắc thể 2, 11, 
12, nằm trên cùng một vị trí đối với 3 gen chủ lực đã được công bố trong nghiên 
cứu trước đây. Hai gen kháng bệnh cháy lá mới đã được tìm thấy trên nhiễm sắc 
thể số 6 và 10. Trong 48 QTLs, có 14 QTL chính và 34 QTL có tính tương tác. 
Trong 14 QTL chính có 9 QTLs có nguồn gốc từ Teqing, QTL ở giữa 2 marker 
J01100 và AJ13060 có nguồn gốc từ Lemont và trên cùng một vị trí với gen chủ 
lực. Đa số các gen kháng ngang có sự chuyên tính về nòi và mối tương tác giữa các 
QTL đã giữ vai trò quan trọng trong sự biểu hiện của tính kháng. 

 


